If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2f^2-13f-7=0
a = 2; b = -13; c = -7;
Δ = b2-4ac
Δ = -132-4·2·(-7)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-15}{2*2}=\frac{-2}{4} =-1/2 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+15}{2*2}=\frac{28}{4} =7 $
| -1/4x-4+3/4x=1/3x+1 | | 13x-(7x-6)=24 | | 20t+5=42 | | -4/4x=8/35 | | 9x+1+82+17=180 | | 2x÷13=x÷1 | | z2–14z+24=0 | | 20t-8=5 | | 36x(-11)=565 | | x/4=2x-14 | | x^2+(x^2+2=113 | | 20x+120=35 | | 5p-3p+p=3p | | 3w+6(5w-4)=108 | | (X-2)2+y2=64 | | 0=-3x^2+12x-5 | | 11t+3=25 | | -8+44=-3(-2+2p) | | -384=6(9-9b)-6 | | 48+(-10p)=-42 | | -2(2+3b)=10-2 | | 5t-12=8 | | 48+(-10p)=8 | | 7*t/3*t-5=9 | | -181-17=-2r+6(-6r+5) | | 2x+33=3x-1=x+14=x+54 | | -285=5(7+8r) | | 12+4(m-4)=-2(m-1)-18 | | 161=-7(7-5r) | | 6(9+4b)+2b=-128 | | 17s+13=13 | | 7/3*t-5=9 |